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Abstract
We study a frequency-dependent continuum model equation for electrostatics
at the nano scale. It is motivated by the need to incorporate accurately the
influence of dielectric correlations which are of the same length scale as the
electrostatic fluctuations in protein–water systems. The model is based on a
single parameter, a length scale for changes in the dielectric response, that
is physically relevant. This parameter reflects the changes in the dielectric
medium caused by local structuring of the molecules. We present three
independent quantitative assessments of the model, including one in which
the dielectric field is changing in time. The assessments involve modeling the
local structuring of dielectrics around individual ions, explaining solvation of
carbon nano-tube interiors and predicting accurately the electrostatic energy
of ions in a carbon nano-tube. The latter involves comparing the frequency-
dependent model equation directly with molecular dynamics simulations with
explicit solvent. The model equation cannot be written as a differential equation
but rather takes the form of a more general Fourier integral operator. It involves
a non-local relationship between the polarization field and the electric field.
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Figure 1. Comparison of empirical permittivity formula in [4] (dotted line) with the model (18)
(solid line) where κ is defined in (4) with λ = 1.7. Plotted are the ratios of the effective permittivity
experienced by a dipole to the vacuum permittivity as a function of the separation distance in Å,
where the bulk permittivity is that of water.

Introduction

A frequently used, ad hoc model to describe the electrostatics at protein–water interfaces [1]
assumes that the permittivity ε̃ may be treated as a mean-field parameter that jumps from one
value in the solvent to another in the protein. In that model, the electrostatic field satisfies the
equation

∇ · (ε̃(r)∇φ(r)) = ρ(r). (1)

This model can be augmented by allowing the permittivity to vary smoothly [2–4] using ad hoc
parameters to represent the transition, as is shown in figure 1. However, this ansatz does not
reflect adequately the organization of water around a protein. In particular, it fails to capture
the dielectric correlations which change significantly on this scale. The electric field around a
protein can vary dramatically [5], so approximating the wave-number-dependent dielectric by
a single value would not be expected to be very accurate, at least near a protein surface.

It might be hoped that (1) would provide a reasonable mean-field approximation, but we
were surprised to find that it did not accurately predict the time-dependent electrostatic energy
of solvated ions in a carbon nano-tube which we determined independently by doing all-atom
molecular dynamics simulations with explicit solvent. We indicate in figure 2 the size of
discrepancy that a model of the type (1) can have in practice.

Fortunately, we found that another model [6, 7] which explicitly accounts for the dielectric
correlations does accurately predict the electrostatic energy of ions in a carbon nano-tube
determined from our molecular dynamics simulations (see figure 3). That model represents
the differential dielectric response as a function of wave number, as indicated in (4), whereas
(1) only accounts for this variation via a mean-field approach.

Models for electrostatics of the type (1) have been utilized to simulate the screening effect
of dielectrics near an ion [4]. However, such models require again an ad hoc representation
of the permittivity as a function of the distance from some object. The concept of a dielectric
is self-referential. That is, the polarization field determining the dielectric depends on the
electric field alone, although the relationship may vary as the material constituency of the
dielectric medium changes. Thus it would be of interest to have a model of electrostatics
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Figure 2. Electrostatic energy restricted only to the ions within nano-tube I (see section 4)
in all configurations generated in the simulation. The explicit-solvent computation (grey line)
is contrasted against the analytic computation (black line) computed with the model (1) with
ε̃(r) = εoptf (r) where f (r) is the empirical expression [4] depicted in figure 1. The parameter
εopt was chosen to balance the positive and negative errors in the figure and had a value of εopt = 11.
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Figure 3. Over-all electrostatic energy restricted only to the ions within nano-tube I (see section 4)
in all configurations generated in the simulation. The explicit-solvent computation (grey line) is
contrasted against the analytic computation (black line) with average dielectric relaxation length
〈λ〉I = 3.26λb .

which is intrinsic, as we consider here. Moreover, we will see that the form of the equation
is fundamentally different from what would be obtained with a spatially varying dielectric of
the form considered to date.

The model equation we utilize takes the form of a Fourier integral operator [8]. We present
independent evaluations of the model. In one case, we consider the effect of ionic screening,
and in two others we consider the behaviour of water and ions in a nano-tube. With only
one free parameter, a length scale encoding the scale of dielectric response, we get excellent
agreement over a broad range of physical/chemical systems.
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1. Dielectric model

The fundamental equations of electrostatics for a collection of charges qi at positions ri can
be derived from the simple expression

∇ · (ε0e) = γ (r) :=
∑

i

qiδ(r − ri ) (2)

where ε0 is the permittivity of the vacuum. Here γ is the charge density (defined using the
symbol “:=” in (2)) and e is the resulting electric field.

A dielectric medium is a collection of polar groups of atoms whose net charge is zero.
In a dielectric medium we can write γ = ρ − ∇ · p where p is the polarization field resulting
from these charge groups, and thus we have ∇ · (ε0e + p) = ρ. Debye [9] observed that (on
average) p is proportional to e where the constant of proportionality is an effective permittivity.
However the relationship between p and e depends on frequency, ν. In particular, he found

ε(ν) = ε0 +
ε1 − ε0

1 + τ 2
Dν2

(3)

where τD is the dielectric relaxation time, a property of the dielectric material, and ν is
the temporal wave number. This dependence on temporal wave number has been verified
experimentally (cf [10] for recent results and references to earlier work).

We are interested in electric fields which are not varying rapidly in time (i.e., ν ≈ 0)
but rather spatially varying on the nanoscale. Thus we introduce the ansatz that the dielectric
response depends on spatial wave number ξ proportional to a factor κ given by

κ(ξ) = ε0 +
ε1 − ε0

1 + |λξ |2 (4)

where λ is the characteristic length for dipole reorientation influence, another property of the
dielectric material, and ξ is the spatial wave number. We will of course interpret the physical
meaning of λ subsequently in this paper. The model (4) is similar to what is called the
Lorentzian approximation and κ is called the static dielectric function [6]. In general, λ could
be a matrix, allowing for anisotropy, but for the time being we will think of it as a scalar. We use
empirical evidence to determine the length scale λ, which we find to be approximately 1.7 Å
in bulk water [4].

The choice of ansatz (4) is based on several considerations. It is clear that the dielectric
response should decrease to zero as the wave number is increased. Once the spatial wave
lengths are comparable to, or smaller than, the size of a dielectric molecule, the ability of that
molecule to respond to such frequencies will be reduced. In the limit, the fluctuations will
be so rapid as to have no affect on a given molecule. Thus we conclude that we must have
κ(ξ) → 0 as ξ → ∞, although this argument does not however suggest a particular analytical
form.

The form (4) is consistent with the form suggested by Debye that can be derived from
diffusion theory [9]. For any plane waves, the basic solutions of the Maxwell equations, we
can change between time and space by relating the spatial wave number ξ to the temporal
wave number ν by cξ = ν where c is the speed of light. That is, if we drive the system
at a frequency ν it will cause spatial fluctuations with wave number ξ = ν/c. Thus it is
reasonable to ask if the formulae (4) and (3) can be reconciled, where λ = cτ . The typical
values of τD are of the order of 10−10 seconds, with a higher frequency mode also identified
[10]. However, the spatial dependence of permittivity (4) would introduce a time constant,
λ/c < 10−18 seconds, which is much smaller than what has been observed experimentally
[10]. Moreover, this is several orders of magnitude smaller than the time scale of molecular
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fluctuations of the water molecule. This suggests that the spatial dependence described here is
an independent feature of the model, not simply a spatial manifestation of previously observed
temporal–wave-number dependence of the permittivity.

Macromolecules induce changes in the electric field which have significant components
for spatial wave numbers of the order of 1010 m−1 and higher [5]. The response of dielectrics
such as water to such spatial fluctuations in an electric field has been studied in the context of
hydrated electrons for many years (see the references in [6]).

2. Basic equations

We can expand e and p in a Fourier series and use the Debye relationship (4) to relate the
resulting coefficients in the series. That is, we have

p̂(ξ) = (κ(ξ) − ε0) ê (ξ). (5)

where here and subsequently we use the notation û to denote the Fourier transform of a
function u:

û(ξ) := 1

(2π)3/2

∫
R

3
eiξ ·ru(r) dr. (6)

Therefore the basic equation is (using the inverse Fourier transform)

∇ ·
(

1

(2π)3/2

∫
R

3
e−ir·ξ κ(ξ) ê (ξ) dξ

)
= ρ(r). (7)

The equation (5) implies that the relationship between p and e is non-local [6, 7].
We can write e = ∇φ using Maxwell’s equations. This provides the simple relation

φ̂(ξ) = ρ̂(ξ)

|ξ |2κ(ξ)
(8)

which can be used to compute φ (and thus e) from ρ. Thus the electrostatic energy can be
easily computed as∫

R
3
ρ(r)φ(r) dr =

∫
R

3

|̂ρ(ξ)|2
|ξ |2κ(ξ)

dξ. (9)

The expression (7) can be simplified in certain limits. Thus, we have

1

(2π)3/2

∫
R

3
e−ir·ξ κ(ξ) ê (ξ) dξ ≈ εj e(r) (10)

where j = 1 when e is very smooth and j = 0 when e consists of only high frequencies.
However, for general fields e it is not possible to approximate the Fourier integral in this way.
The equation (7) involves a Fourier integral operator [8]. When λ does not vary as a function
of the spatial variable r, it is possible to write (7) as a fourth-order elliptic partial differential
operator for the potential φ, due to the special form of κ(ν). To derive such an expression, we
apply the operator 1 − λ2� to the equation (7). However, it is easier to calculate in Fourier
space. Recall that the symbol (or Fourier transform) of this operator is 1 + λ2|ξ |2, and observe
that (1 + λ2|ξ |2)κ(ξ) = ε1 + ε0λ

2|ξ |2. Multiplying (8) by |ξ |2κ(ξ)(1 + λ2|ξ |2) and comparing
Fourier transforms, we find that

∇ · ((ε1 + ε0λ
2�)∇φ) = ε1�φ + ε0λ

2�2φ = (1 + λ2�)ρ (11)

provided that λ is constant. However, if λ is a function that varies with r (see section 4) then
(11) is no longer valid.



9796 R Scott et al

3. Ionic screening

The first question to ask with the model (7) is what the electric field (or potential) looks like
for a single charge ρ = δ. More precisely, (7) with ρ = δ defines a family of potentials
φ = φθ,λ for any given θ and λ, where θ = ε0/ε1. For water, we have θ = 0.013. A change
of variables implies that

φ(r) = 1

ε0λ
ϕθ(r/λ) (12)

where ϕθ is defined using the kernel

κθ (ξ) = 1 +
θ−1 − 1

1 + ξ 2
. (13)

In the limit λ → ∞ we find φθ,∞ = φ0(r) = 1/4πε0r independent of θ .
The computation of ϕθ requires us to consider the Fourier transform of a radially symmetric

function u (which is itself radially symmetric). The following formula holds:

|ξ |̂u(ξ) := 4π

(2π)3/2

∫ ∞

0
ru(r) sin(|ξ |r) dr (14)

where u(r) means u(r) with r = |r|. Thus we have

ϕθ(r) = 1

2π2r

∫ ∞

0

sin(rρ)

ρκθ (ρ)
dρ. (15)

Thus we can determine that

φθ,λ(r) = φ0(r)(θ + (1 − θ) e−r/λ
√

1−θ ). (16)

From this we can derive an empirical spatial permittivity dependence

ε̃(r) := ‖∇φ0(r)‖
‖∇φθ,λ(r)‖ (17)

= ε0

(
θ + (1 − θ)

(
1 +

r

λ
√

1 − θ

)
e−r/λ

√
1−θ

)−1

(18)

which we compare to the formula in [4] in figure 1 with λ = 1.7.
It is important to emphasize that (7) is not the same as (1), even though we have derived

the expression for ε̃(r) from (7). The equation (7) provides an intrinsic representation of the
relationship between the electric field and the polarization field. The expression ε̃(r) simply
provides a spatial portrayal of this relationship in a particular case, but it is not an accurate
representation for all frequencies (if indeed for any particular solution). Equation (7) can be
applied in general contexts.

4. Spatial dependence of λ: nano-tube case study

As a second test, we now consider our model (7) as it would relate to the behaviour of a
system of water in a carbon nano-tube. In this case, the parameter λ depends on the distance
to elements that can cause structuring of the dielectric, such as hydrophobes would do with
water. The value of λ represents a length scale below which fluctuations in external fields
lead to a substantially reduced dielectric response. Recent experiments [11] have indicated
that such effects might be expected to occur on very long scales, e.g., when two hydrophobic
plates immersed in water are brought to within 0.1 micron of each other. We propose that
allowing λ to vary spatially near elements that cause independent structuring of the dielectric
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Table 1. The number of water molecules per nanometre length of nano-tube reported by various
authors. The radii of the tubes are indicated by listing the number n of units for an (n:n) armchair
configuration. The first author names indicate the following references: Hummer [19], Marti [20],
Noon [22], Mashl [23]. The second column is the length of the nano-tubes in nanometres. It
should be remembered that the results listed in the row marked ‘this paper’ involved a combination
of water and ions in the tubes and thus cannot be directly compared.

First author length (nm) n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 12 n = 16

Hummer 1.34 3.73
Noon 2.0 12 18 29
Mashl 4.0 3.5 4 7.5 13.8 20.3 26 42.5 86.3
This paper 5.36 7.1 9.8
Marti 7.45 1.88 7.52 16.9 30.1

fluid provides a way to systematically model electrostatics of macro-molecular systems at the
nanometre scale.

Carbon nano-tubes may provide insight into the functioning of ion channels [12, 13].
However, ion channels can introduce many factors that affect the electrical environment,
including shape change, complex distribution of hydrophobes, polar groups and charged
residues [14]. Thus carbon nano-tubes present a simpler, but non-trivial, environment in
which to study the effects of confinement and structuring of dielectrics [15, 16, 7, 17].
However, this understanding can be applied to more complex situations as well.

Recently, there has been a significant interest in simulating the environment of carbon
nano-tubes by molecular dynamics [18–23]. (The earlier work [15] was done in a smooth
cylindrical tube with an ad hoc hydrophobic repulsive force at the wall.) There is a simple
competition that determines the behaviour of water in a carbon nano-tube. On the one hand,
the enclosing tube limits the fluctuations of the water molecules and thus reduces translational
entropy. This causes the interior of the tubes to be drier than the surrounding bulk environment.
For example, in [19] the typical number of water molecules in the tube is five, whereas a region
of the same size in bulk would hold more than twenty molecules. But correspondingly, as
the water environment becomes more structured due to the drying effect of the tube, the
electrostatic contribution to hydrogen bonding gets enhanced as the screening effect of the
dielectric diminishes. Table 1 collects results based on molecular dynamics simulations
from many groups, indicating that longer and narrower tubes are drier. As we will show,
water molecules in a carbon nano-tube form very strong hydrogen bonds that compensate
energetically for the entropic energy loss.

Detailed predictions of the number of water molecules in a nano-tube would require
a model recognizing the discrete nature of the possible packings of water molecules in a
hydrophobic tube, as well as the discrete sizes of carbon nano-tubes available. However the
competition between loss of entropy and gain in electrostatic energy can be estimated. For
example, the entropic loss may be estimated as �S = kB log � where kB is Boltzmann’s
constant and � is the quotient of the expected number of hydrogen-bond partners in the
nano-tube over the expected number in bulk water.

Denote β−1 = kBT , where T is absolute temperature. Then the rate of response in the
dielectric is slowed down, due to the suppression of φ = (1 − �)m hydrogen bond partners
(m = 4 for bulk water) with neighbouring water molecules, by a factor

eβ(Fdd−T�s) = e−(φ−1+1) log � = �−(1+1/φ) (19)

where Fdd = −kBT φ−1 log � is the potential energy barrier opposing the reorientation of a
dipole d in a field Fd and �S = kB log �.
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We assume a growth in correlation length commensurate with the slowing down of the
reorientation of the dipoles. This is in analogy with the growth of a spatial order parameter at
criticality. We estimate the change in λ as

λ = λb�
−(1+1/φ) (20)

where λb = 1.7, the bulk value. The dependence of � on r is taken [24] to be

�(r) = 1 − e−‖r−rt‖/λb (21)

where rt denotes the closest point to r on the nano-tube wall. This form agrees closely with
figure 2 in [23] (also see the data in figure 2 in [25]).

We can now identify the source of thermodynamic compensation for water confinement.
The entropy decrease per mole due to confining a water molecule inside the nano-tube is
T �S = T kB log �(r) = 0.601 log �(r) kcal/mole at T = 303K. The enthalpy increase
due to concurrent losses in binding partnerships is �H = m(1 − �(r))εHB = 1.44(1 −
�(r)) kcal/mole (for a reasonable in-bulk hydrogen-bond enthalpy decrease of εHB ≈
0.36 kcal/mole [10]). Therefore �H −T �S = 1.44(1 −�(r))− 0.601 log �(r) kcal/mole.

If it were not for the enhancement of the electrostatic energy due to the modified dielectric
environment, it would be thermodynamically unfavourable for water to go into a nano-tube.

The enhancement of the electrostatic field for a hydrogen bond can be derived by
considering the expression (18) using different values for λ (λb in the bulk and λ(s) for a
hydrogen bond at a distance s from the tube wall) and for r (the hydrogen bond lengths in
the bulk and in the nano-tube). The substantial increase of λ as the distance to the wall is
decreased leads to an enhancement of the electrostatic field for a hydrogen bond, even if the
bond length is increased in the nano-tube over the typical length in bulk.

To assess the net result of the competition of these two effects, we carried out extensive
molecular dynamics simulations, to be described in detail subsequently. We constructed
in silico two carbon nano-tubes of 14 (I) and 18 (II) carbon-ring perimeter, that is, (7,7) and
(9,9), respectively, ‘arm-chair’ form nano-tubes, each embedded in an ionic solution reservoir.
These were uncapped single-wall nano-tubes of 20 hexagonal rings in length (≈53.6 Å), and
the diameters are ≈9.45 Å (I) and ≈12.15 Å (II).

The expressions 〈�〉I = 0.441 and 〈�〉II = 0.821 are the average of (21) over the
respective nano-tube interiors.

The electrostatic enhancement of a single water–water hydrogen bond in the nano-tube
compensates for the free energy cost of confining the molecule in the nano-tube:

5εHB ≈ 2.5 kcal/mole

> �HI − T�SI = 1.61 kcal/mole

1.66εHB ≈ 0.83 kcal/mole

> �HII − T �SII = 0.478 kcal/mole.

Thus a dramatic enhancement of electrostatic interactions inside nano-tubes results as their
diameter is decreased, causing a qualitative change in the behaviour of the nano-tube as a
modulator of ion-concentration gradients. This suggested that we measure this quantitatively
using our model equation (7) and compare these predictions with the molecular dynamics
simulations.

5. A dynamic simulation

Since the dielectric field depends on the electric field, it will vary dynamically if, say, ions
are moving in the dielectric medium. Our model (7) automatically adjusts for such changes
and accounts accurately for any frequency dependence (which would arise as ions move
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differentially) as well. A system consisting of a carbon nano-tube immersed in a bath of
ions and water provides such an opportunity to use the model in a dynamic environment. To
simulate such a system, we used classical molecular dynamics, which we now describe in
some detail.

In the molecular dynamics simulations, each nano-tube is regarded as a rotationally free
rigid body, and the simulations were carried out for 100 ns at 303 K. We used explicit solvent
with the TIP5P [26] water model. Two ion pairs K+L− and L+Cl− were chosen so that the
counter-ions L+ and L− were sterically precluded from entering the nano-tube. The bulk
L+Cl− to K+L− concentration ratio was fixed at 7:1 (other extreme ratios give similar results).
The solution consisted of 11818 water molecules, 220 K+L− dissociated ion pairs and 1540
L+Cl− dissociated ion pairs.

The water model incorporates basis-set effects and has been shown to faithfully encompass
the solvent polarizability [27]. Four molecular dynamics simulations for each nano-tube (I, II)
as described in section 4 were performed adopting AMBER 7 force field covering 100 ns of
real (physical) time. The initial conditions were chosen so that the nano-tubes were initially
loaded with water molecules and allowed to equilibrate in a pure-water reservoir before being
transferred to the ionic solution at t = 0. An 8 Å-cutoff has been imposed on the ranges of all
electrostatic interactions. The numerical integration employs the Verlet algorithm [28] with
a 5 fs step. A thermal bath coupling [29] was adopted to control the temperature at 303 K.
Structures were saved every 10 ps. Carbon atoms are modelled as Lennard–Jones spheres
with 3.4 Å cross-section and potential well depth 0.086 kcal/mol, as in sp2 carbons. The
sp2 bond lengths, planar and torsional angles have harmonic distortion force constants
fixed at 1002 kcal/(mol Å

2
), 126 kcal/(mol rad2) and 89 kcal/(mol rad2), respectively.

The carbon-water Lennard–Jones cross-section is 3.275 Å and the energy well is fixed at
0.1143 kcal/mol, a value which represents the polarization of the nano-tube wall via a quantum-
mechanical configuration interaction, leading to a deeper Lennard–Jones well than would be
the case without polarization effects.

Both K+ and Cl− penetrated the nano-tubes and eventually an equilibrium concentration
was established. While the bulk ratio was preserved inside the wider nano-tube, in the narrow
one, a steady 5:5 Cl−/K+ ratio was established after 80 ns, concurrently with a slight drying
transition. This is commensurate with the predicted enhancement of the electrostatic fields
which cannot sustain a charge imbalance inside the smaller nano-tube. The dependence
of Cl−/K+ ratio on nano-tube diameter can be accounted for by determining differences in
charge shielding, as can be quantified by comparing the parameters 〈�〉I = 0.441 and 〈�〉II =
0.821, cf equation (20).

The nano-tube interiors remain hydrated in spite of the entropic cost T �S associated
with the confinement of water. Throughout the simulations there are 40 ± 2 and 51 ± 3 water
molecules inside nano-tubes (I) and (II), respectively, except for a distinct drying transition at
80 ns in nano-tube (I).

A survey of results from the literature (see table 1) shows that these results are in reasonable
agreement regarding the number of water molecules per unit length of the nano-tube. In
particular, table 1 shows that the number of water molecules per unit length grows essentially
quadratically as a function of the diameter, and it decreases with the length of the nano-tube.
Our numbers do not compare directly since there are in addition ions in the channel, but they
are provided for reference.

Our results indicate that hydration of the nano-tube takes place with a steady flux of
21 ± 2 water molecules/ns (I) and 24 ± 2 water molecules/ns (II). Due to the confinement,
the average hydrogen-bond lifetime within the nano-tubes is 16 ps (I) and 4 ps (II) versus 1 ps
in bulk water [30].
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Figure 4. (a) Ion traffic in nano-tube I: the number N(t) of Cl− and K+ ions inside the nano-tube
at time t resolved at the ns time-scale over the 100 ns; this is a snapshot of the system at t =
8 ns, and represents a short-lived configuration with a Cl−/ K+ 4:1 ratio inside the nano-tube with
3 external bulky counter-ions (L+) within 7 Å from the nano-tube. (b) Fluctuations around the
average 〈M〉 = 40 in the number of water molecules M(t), at time t inside nano-tube I. The plotted
values are averaged every 1ns. Notice the drying transition at about t* = 80 ns.

The dynamics of ion traffic in nano-tube I are displayed in figure 4(a), which shows the
number N(t) of Cl− and K+ ions inside the nano-tube at time t resolved at the ns time-scale
over the 100 ns.

Figure 5(a) is a snapshot of the system at t = 8 ns, and represents a short-lived
configuration with a Cl−/ K+ 4:1 ratio inside the nano-tube with 3 external bulky counterions
(L+) within 7 Å from the nano-tube. Figure 5(b) is a snapshot of the system at t = t∗ = 80 ns,
when a dynamic steady state is reached with stoichiometric ratio 5:5 forming a chain of
alternating Cl− and K+ ions. Once established at 80ns, this ratio prevailed for an additional
100 ns run with ±1 fluctuations in the number of ions. Four simulations yielded a t∗ dispersion
within 10% of 80 ns. Similarly, a bulk 6:1 ratio yields t∗ ≈ 44 ns, a 5:1 ratio yields t∗ ≈ 37 ns
and a 2:1 ratio yields t∗ ≈ 19 ns.

The steady 5:5 stoichiometry implies that a charge de-shielding due to severe water
confinement makes it impossible to sustain a charge imbalance within nano-tube I, and that
the proximity of bulky counterions from the outside is insufficient to counteract a charge
imbalance (cf figure 4(a)). Furthermore, there is a slight ‘drying transition’ (Figure 4(b)) in
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Figure 5. (a) Unstable ion configuration in nano-tube I with a Cl−/K+ 4:1 stoichiometry, occurring
at t = 8 ns (cf figure 3). The charge imbalance inside the nano-tube is compensated externally
by the presence of bulky L+-counter-ions within 7 Å of the nano-tube wall. Cl−, K+ and L+

are represented as red, blue and light blue balls of ionic radius 1.8, 1.38 and 6.1 Å, respectively.
(b) Stable ion configuration at t = t* = 80 ns inside nano-tube I with a steady 5:5 stoichiometry
(cf figure 3).

nano-tube I concurrent with the charge balance (figure 3) reinforcing the charge de-shielding
precisely for t > t∗ = 80 ns.

By contrast, no appreciable variation from the bulk Cl−/ K+ 7:1 ratio is observed inside
the wider nano-tube II (figure 6): the 7:1 ratio is established at t∗ ≈ 8 ns and remains
approximately steady for the remaining 92 ns. The charge imbalance inside the tube is
compensated from the outside by the permanent presence of bulky counterions within 7 Å
from the walls. The t∗ dispersion was within 5% of this for four simulations.

The model equation (7) can be evaluated by computing the electrostatic interaction energy
for all configurations of ions inside nano-tube I along the 100 ns simulation as shown in figure 3
(similarly satisfactory results are obtained for nano-tube II). To estimate the field e(r) at
position r generated by the ion distribution in the nano-tube, we utilized the model equation (7)
with an averaged λ as described following (20). Thus for our nano-tube I, we find
〈λ〉I = 3.26λb and for nano-tube II, we find 〈λ〉II = 1.6λb. With these values of 〈λ〉I and
〈λ〉II , we find that invariably the electrostatic energy predicted using (9) for ion concentrations
in the nano-tubes agrees with data obtained from molecular dynamics experiments, averaged
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Figure 6. The traffic of Cl− (red) and K+ (blue) ions in nano-tube II represented as the number of
ions, N(t), of each type present inside the nano-tube at time t. The 100 ns simulation is examined
at 1ns intervals. The steady-state regime actually extends in time until the end of the simulation,
lasting at least 92 ns.

over 10 ns intervals, to within 5–15%, generated by the explicit-solvent all-atom simulation
for all the ion configurations. The drying transition at t = 80 ns in nano-tube I provides a
dynamic application of (7).

Finally, let us reconsider the model (1) with ε̃(r) = εoptf (r) where f (r) is the empirical
expression [4] depicted in figure 1. The parameter εopt was chosen to balance the positive and
negative errors in figure 2, and had a value of εopt = 11. Thus it is clear that the model (1)
cannot provide the same level of accuracy as (7).

6. Conclusions

A wave-number-dependent continuum model for electrostatics [6, 7] has been shown to
predict nano-scale behaviour better than mean-field models. It was motivated by the need to
incorporate accurately dielectric correlations. The model is based on a single parameter, a
length scale that reflects the extent of local structuring of the dielectric molecules. We presented
three independent quantitative uses of the model, including one in which the dielectric field
is changing in time. The latter compares the wave-number-dependent model with molecular
dynamics simulations with explicit solvent and demonstrates clearly the improvement over
other models. The frequency-dependent model has also been used successfully [31, 32] to
quantify the extent of wrapping of hydrogen bonds on the surface of proteins.
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